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Abstract

In this paper, a model-predictive trajectory-tracking control applied to a mobile robot is presented. Linearized tracking-error dynamics is used
to predict future system behavior and a control law is derived from a quadratic cost function penalizing the system tracking error and the control
effort. Experimental results on a real mobile robot are presented and a comparison of the control obtained with that of a time-varying state-
feedback controller is given. The proposed controller includes velocity and acceleration constraints to prevent the mobile robot from slipping and
a Smith predictor is used to compensate for the vision-system dead-time. Some ideas for future work are also discussed.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In recent years there has been an increasing amount of
research on the subject of mobile robotics. Mobile robots are
increasingly used in industry, in service robotics, for domestic
needs (vacuum cleaners, lawn mowers, pets), in difficult-to-
access or dangerous areas (space, army, nuclear-waste cleaning)
and also for entertainment (robotic wars, robot soccer).

Several controllers were proposed for mobile robots with
nonholonomic constraints, where the two main approaches
to controlling mobile robots are posture stabilization and
trajectory tracking. The aim of posture stabilization is to
stabilize the robot to a reference point, while the aim of
trajectory tracking is to have the robot follow a reference
trajectory. For mobile robots trajectory tracking is easier
to achieve than posture stabilization. This comes from the
assumption that the wheel makes perfect contact with the
ground, resulting in nonholonomic constraints, which means
that not all the velocities are possible at a certain moment.
An extensive review of nonholonomic control problems can
be found in [7]. According to Brockett’s condition [2]
nonholonomic systems cannot be asymptotically stabilized
around an equilibrium using smooth time-invariant feedback.
Completely nonholonomic, driftless systems are controllable
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in a nonlinear sense; therefore, asymptotic stabilization can
be obtained using time-varying, discontinuous or hybrid
control laws. An exponentially stable, discontinuous feedback
controller was proposed by [3] and the point stabilization
of mobile robots via state-space exact-feedback linearization
using proposed coordinates was studied in [17].

Trajectory tracking is more natural for mobile robots.
Usually, the reference trajectory is obtained by using a
reference robot; therefore, all the kinematic constraints are
implicitly considered by the reference trajectory. The control
inputs are mostly obtained by a combination of feedforward
inputs, calculated from reference trajectory, and feedback
control law, as in [22,10,16,1]. Lyapunov stable time-varying
state-tracking control laws were pioneered by [5,20,21], where
the system’s equations are linearized with respect to the
reference trajectory, and by defining the desired parameters
of the characteristic polynomial the controller parameters
are calculated. The stabilization to the reference trajectory
requires a nonzero motion condition. Many variations and
improvements of this simple and effective state-tracking
controller followed in latter research. An adaptive extension of
this work was introduced in [18], where adaptive capabilities
are included to increase the robustness to robot-model
uncertainties. A fuzzy inference mechanism extension that
compensates for environmental perturbations such as variable
friction is proposed in [19]. A tracking control using modified
input–output linearization providing a least-squares solution
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Fig. 1. The differentially driven mobile robot.

for a nonsquare system is dealt with in [6]. In [13] a
trajectory-tracking state-feedback controller is combined with
an observer that is used to estimate an unknown orientation
error. Input–output linearization is used in [22] to follow
reference trajectory dynamics considering a dynamic model.
Some of the solutions to the controller design solve both the
trajectory-tracking and posture-stabilization control problems,
where the stabilization problem is usually converted to an
equivalent tracking problem, as in [18,16,9]. In [9] a saturation
feedback controller where saturation constraints of the velocity
inputs are incorporated into the controller design is introduced.
In [16] a dynamic feedback linearization technique is used to
control a mobile robot platform.

Predictive control techniques are a very important area of
research. In the field of mobile robotics predictive approaches
to path tracking also seem to be very promising because
the reference trajectory is known beforehand. Most model-
based predictive controllers use a linear model of mobile-
robot kinematics to predict future system outputs. In [15] a
generalized predictive control is chosen to control a mobile
robot, where a quadratic cost function penalizing the tracking
errors and control effort is minimized. A generalized predictive
controller using a Smith predictor to cope with an estimated
system time delay is presented in [14]. In [8] a model-predictive
control based on a linear, time-varying description of the system
is used. The control law is again solved by an optimization of
a cost function. The nonlinear predictive controller scheme for
a path-tracking problem is proposed in [4]. Here, a multi-layer
neural network is employed to model the nonlinear kinematic
behavior of a mobile robot. However, the optimum solution
of the control vector is still obtained by minimizing a cost
function, like in previous studies.

This paper deals with a differentially driven mobile robot
and trajectory-tracking control on a reference trajectory that
is a smooth twice-differentiable function of time. The model-
predictive control law is based on a linearized error dynamics
model obtained around the reference trajectory. The main idea
of the control law is to minimize the difference between the
future trajectory-following errors of the robot and the reference
robot with defined, desired dynamics. The proposed control law
is analytically derived; therefore, it is computationally effective
Fig. 2. System overview.

and can be easily used in fast real-time implementations. The
main advantages over predictive control are an error model-
based prediction and an explicitly obtained analytical control
law. The model-predictive control obtained is compared to a
well-known time-varying state-tracking control law [5,20,12],
which is based on the literature review done in this work
and works presented by [6,18,19], one of the most common
and successful approaches in mobile robot tracking control.
The design of the state-tracking control law in a discrete time
domain is given. The experimental results for both control laws
obtained for a real robot are evaluated and compared.

The remainder of the paper is organized as follows. In
Section 2 is a description of the mobile robot, its control
architecture and its kinematics. The concept of trajectory-
tracking controller design, where the control strategy consists
of feedforward and feedback actions, is introduced in Section 3.
In Section 4 the proposed model predictive controller is derived.
The experimental results for the predictive control obtained are
presented in Section 5, and the conclusion is given in Section 6.

2. Mobile-robot control-system design

The control-system design proposed in this study, the
experiments and the comparisons were performed on the
small, two-wheeled, differentially driven mobile robot shown
in Fig. 1.

2.1. Robot description and control architecture

The robot measures 7.5 × 7.5 × 7.5 cm and weighs 0.6 kg.
It contains a C167 microcontroller running at a 20 MHz clock,
a 12 V battery supply, two powerful DC motors equipped with
incremental encoders (512 pulses per revolution), and a gear
reduction head.

The control of the mobile robot’s motion is performed
on two levels, as demonstrated in Fig. 2. The low-level
control is in charge of controlling the robot’s wheel speeds,
while the high-level control determines the required robot
speeds considering its first-order kinematics. This two-layer
architecture is very common in practice because most mobile
robots and manipulators usually do not allow the user to impose
accelerations or torques at the inputs. It can also be viewed as a
simplification to the problem as well as a more modular design
approach.

The low-level control is implemented in the robot. Each
wheel (motor) speed is controlled by a discrete PID controller
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with a cycle time of 1 ms; this ensures that the robot drives
with the required reference wheel speeds. These reference
wheel speeds are obtained from the high-level control through
a wireless connection. Finally, two power amplifiers are used to
drive the motors with 33 kHz PWM signals.

High-level control is proposed in this study. It is
implemented on a personal computer where the states of the
mobile robots (posture) are obtained from a vision system with
a 33 ms sample time. The calculated robot inputs (speeds) are
sent via a wireless connection to the robot’s low-level control.

2.2. Kinematics and driving constraints

The robot’s architecture, together with its symbols, is shown
in Fig. 1. The kinematic motion equations of the mobile robot
are equivalent to those for a unicycle. Robots with such an
architecture have a nonintegrable constraint in the form

A(q)q̇ = ẋ sin θ − ẏ cos θ (1)

resulting from the assumption that the robot cannot slip in a
lateral direction. In Eq. (1) A(q) is the constraint matrix defined
over the generalized coordinates q(t) = [x(t) y(t) θ(t)]T .
The first-order kinematics model is obtained by expressing
all the achievable velocities of the mobile robot as a linear
combination of the vector fields si (q) that span the null space
of the matrix A(q). The kinematics model then results in the
following equation:

q̇(t) =
[
s1(q) s2(q)

] [v(t)
ω(t)

]

=

cos θ(t) 0
sin θ(t) 0

0 1

[v(t)
ω(t)

]
(2)

where v(t) and ω(t) are the tangential and angular velocities of
the platform in Fig. 1. The right and left velocities of the robot’s
wheels (needed for the low-level control) are then expressed as
vR = v +

ωL
2 and vL = v −

ωL
2 .

During low-level control the bounded velocity and
acceleration constraints are considered. The robot’s tangential
and angular velocities are bounded with vMAX = ωM R and
ωMAX = 2ωM R/L , where ωM is the maximum angular
velocity of the wheel and R is its radius. A saturation of the
command velocities [16] that preserve the current curvature
κ =

ω
v

is performed as

σ = max{|v|/vMAX, |ω|/ωMAX, 1}

where the actual command velocities vc and ωc stand for

vc = sign(v)vMAX, ωc = ω/σ ; σ = |v|/vMAX
vc = v/σ, ωc = sign(ω)σMAX; σ = ω|/ωMAX
vc = v, ωc = ω; σ = 1.

To prevent the mobile robot from slipping, the wheel’s
command velocities (vRc, vLc) are bounded with the allowable
acceleration, as follows:

vRc(k) = vR(k); |aR | ≤ aMAX
vRc(k) = vRc(k − 1) + sign(aR)aMAXTs; |aR | > aMAX
and

vLc(k) = vL(k); |aL | ≤ aMAX
vLc(k) = vLc(k − 1) + sign(aL)aMAXTs; |aL | > aMAX

where the left- and right-hand wheel accelerations are
computed as aR =

vR(k)−vRc(k−1)
Ts

and aL =
vL (k)−vLc(k−1)

Ts
, and

Ts is the sampling time. The maximum allowable acceleration,
aMAX, is determined experimentally so that the mobile robot
never slips.

3. Definition of the trajectory-tracking problem

There are two basic control approaches to solving the mobile
robot’s motion task: stabilization to a fixed posture and tracking
of the reference trajectory.

For nonholonomic systems, the trajectory-tracking problem
is easier to solve and more natural than posture stabilization.
According to Brockett’s condition [2] asymptotic stability of
a nonholonomic system to a fixed posture is only possible
with a time-varying or discontinuous feedback. Stabilization,
therefore, cannot be achieved by a continuous time-invariant
feedback law.

In the case of a trajectory-tracking controller a linear
time-varying system is obtained by approximate linearization
around the trajectory. The linearization obtained is shown to be
controllable [20,21,11,3] as long as the trajectory does not come
to a stop, which implies that the system can be asymptotically
stabilized by smooth linear or nonlinear feedback.

The rest of the paper deals with trajectory-tracking controller
design where the control strategy combines a feedforward
solution and a feedback action.

3.1. Feedforward control action

Open-loop control of feedforward control is an intuitive
approach to steering nonholonomic systems. Having a feasible
path that enables us to reach a desired posture, the feedforward
control inputs vr (t) and ωr (t) are derived using the kinematic
model (2). For a given reference trajectory (xr (t), yr (t))
defined in a time interval t ∈ [0, T ] the feedforward control
law is derived. However, the calculated robot inputs drive the
robot on a desired path only if there are no disturbances and no
initial state errors. The tangential velocity vr (t) is calculated as
follows:

vr (t) = ±

√
ẋ2

r (t) + ẏ2
r (t) (3)

where the sign depends on the desired drive direction (+ for
forward and − for reverse). The tangent angle of each point on
the path is defined as

θr (t) = arctan2(ẏr (t), ẋr (t)) + kπ (4)

where k = 0, 1 defines the desired drive direction (0 for forward
and 1 for reverse) and the function arctan2 is a four-quadrant
inverse tangent function. By calculating the time derivative of
(4) the robot’s angular velocity ωr (t) is obtained:

ωr (t) =
ẋr (t)ÿr (t) − ẏr (t)ẍr (t)

ẋ2
r (t) + ẏ2

r (t)
= vr (t)κ(t) (5)
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Fig. 3. Robot following error transformation.

where κ(t) is the path curvature. By using relations (3)
and (5) and the defined reference robot path qr (t) =

[xr (t), yr (t), θr (t)]T the robot inputs vr (t) and ωr (t) are
calculated. The necessary condition in the path-design
procedure is a twice-differentiable path and a nonzero
tangential velocity vr (t) 6= 0. If for some time t the tangential
velocity is vr (t) = 0, the robot rotates at a fixed point with the
angular velocity ωr (t). The angle θr (t) cannot be determined
from Eq. (3) and therefore θr (t) must be given explicitly.

3.2. Feedback control action

When the robot is controlled to drive on a reference path, it
usually has some state-following error. The state-tracking error
e(t) = [e1(t) e2(t) e3(t)]T expressed in the frame of the real
robot, as shown in Fig. 3, reads

e =

 cos θ sin θ 0
−sin θ cos θ 0

0 0 1

 (qr − q) (6)

In Fig. 3 the reference robot is an imaginary robot that
ideally follows the reference path. In contrast, the real robot
(when compared to the reference robot) has some error when
following the reference path. Therefore, the control algorithm
should be designed to force the robot to follow the reference
path precisely.

Taking into account the robot’s kinematics (2) and deriving
the relations (6) the following kinematic model is obtained:

ė =

cos e3 0
sin e3 0

0 1

[vr
ωr

]
+

−1 e2
0 −e1
0 −1

 u (7)

where u = [v ω]
T is the velocity input vector and vrωr are

already defined in Eqs. (3) and (5). The robot input vector u
is further defined as the sum of the feedforward and feedback
control actions, as follows:

u = uF + u B (8)

where the feedforward input vector, uF , is obtained by
a nonlinear transformation of the reference inputs uF =

[vr cos e3ωr ]
T and the feedback input vector is u B =

[u B1 u B2 ]
T , which is the output of the controller defined in

Section 4 (see Fig. 4).
Using relation (8) and rewriting Eq. (7) results in the
following tracking-error model:

ė =

 0 ω 0
−ω 0 0
0 0 0

 e +

 0
sin e3

0

 · vr +

−1 0
0 0
0 −1

 u B (9)

Subsequently, by linearizing the error dynamics (9) around the
reference trajectory (e1 = e2 = e3 = 0, u B1 = u B2 = 0) the
following linear model results:

ė =

 0 ωr 0
−ωr 0 vr

0 0 0

 e +

−1 0
0 0
0 −1

 u B (10)

which is in the state-space form, ė = Ace + Bcu B . The
controllability matrix [Bc Ac Bc A2

c Bc] has full rank if either
vr or ωr is nonzero, which is a sufficient condition for
controllability only when the reference inputs vr and ωr are
constant (linear and circular paths). In this case it is possible to
stabilize the system with smooth static feedback. If the time-
varying reference inputs vr or ωr are used the nonsingularity
of the controllability gramian should be checked [20,12,16].
Although the system (2) with only one nonholonomic constraint
(1) is completely nonholonomic and therefore controllable
in a nonlinear sense (Chow’s theorem), asymptotic stability
with smooth static feedback, like with LTI systems, cannot
be concluded. However, Brockett’s condition [2] states that
smooth stabilization of the system (2) is only possible with a
time-varying feedback.

The schema of the control obtained is explained in Fig. 4.
In the following, two approaches to the design of a trajectory-
tracking controller are presented.

4. Design of the trajectory-tracking controller

To design the controller for trajectory tracking the system
(10) will be written in discrete-time form as

e(k + 1) = Ae(k) + Bu B(k)

where A ∈ Rn
× Rn , n is the number of the state variables and

B ∈ Rn
× Rm , and m is the number of input variables. The

discrete matrices A and B can obtained as follows:

A = I + AcTs

B = BcTs
(11)

which is a good approximation for a short sampling time Ts .

4.1. Model-predictive control based on the robot-tracking-
error model

The idea of the moving-horizon control concept is to find
the control-variable values that minimize the receding-horizon
quadratic cost function (in a certain interval denoted by h)
based on the predicted robot-following error:

J (u B, k) =

h∑
i=1

εT (k, i)Qε(k, i) + uT
B(k, i)Ru B(k, i) (12)
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Fig. 4. Mobile-robot control schematic.
where ε(k, i) = er (k + i) − e(k + i |k) and er (k + i) and
e(k + i |k) stand for the reference robot-following trajectory and
the robot-following error, respectively, and Q and R stand for
the weighting matrices where Q ∈ Rn

×Rn and R ∈ Rm
×Rm ,

with Q ≥ 0 and R ≥ 0.

4.1.1. Output prediction in the discrete-time framework
In the moving time frame the model-output prediction at the

time instant h can be written as

e(k + h|k) =

h−1∏
j=1

A(k + j |k)e(k) +

h∑
i=1

(
h−1∏
j=i

A(k + j |k)

)
× B(k + i − 1|k)u B(k + i − 1)

+ B(k + h − 1|k)u B(k + h − 1). (13)

Defining the robot-tracking prediction-error vector

E∗(k) =

[
e(k + 1|k)T e(k + 2|k)T . . . e(k + h|k)T

]T
.

where E∗
∈ Rn·h for the whole interval of the observation (h)

and the control vector

UB(k) =

[
uT

B(k) uT
B(k + 1) . . . uT

B(k + h − 1)
]T

and

Λ(k, i) =

h−1∏
j=i

A(k + j |k)

the robot-tracking prediction-error vector is written in the form

E∗(k) = F(k)e(k) + G(k)UB(k) (14)

where

F(k) = [A(k|k) A(k + 1|k)A(k|k) . . . Λ(k, 0)]T , (15)

and

G(k)

=


B(k|k) 0 · · · 0

A(k + 1|k)B(k|k) B(k + 1|k) · · ·

.

.

.

.

.

.
.
.
.

. . .
.
.
.

Λ(k, 1)B(k|k) Λ(k, 2)B(k + 1|k) · · · B(k + h − 1|k)


(16)
and F(k) ∈ Rn·h
× Rn , G(k) ∈ Rn·h

× Rm·h .
The objective of the control law is to drive the predicted

robot trajectory as close as possible to the future reference
trajectory, i.e., to track the reference trajectory. This implies that
the future reference signal needs to be known. Let us define the
reference error-tracking trajectory in state-space as

er (k + i) = Ai
r e(k) (17)

for i = 1, . . . , h. This means that the future control error should
decrease according to the dynamics defined with the reference
model matrix Ar . Defining the robot reference-tracking-error
vector

E∗
r (k) =

[
er (k + 1)T er (k + 2)T . . . er (k + h)T

]T

where E∗
r ∈ Rn·h for the whole interval of observation (h), the

following is obtained:

E∗
r (k) = Fr e(k) (18)

where

Fr =

[
Ar A2

r . . . Ah
r

]T
, (19)

and Fr ∈ Rn·h
× Rn .

4.1.2. Control law
The idea of MPC is to minimize the difference between

the predicted robot-trajectory error and the reference robot-
trajectory error in a certain predicted interval.

The cost function is, in accordance with the above notation,
now written as

J (UB) =
(
E∗

r − E∗
)T Q

(
E∗

r − E∗
)
+ U T

B RUB (20)

The control law is obtained by minimizing the cost function as
follows:

∂ J
∂UB

= −2QGT E∗
r + 2GT QE∗

+ 2RUB = 0 (21)

and the control vector becomes

UB(k) =

(
GT QG + R

)−1
GT Q (Fr − F) e(k). (22)
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where

Q =


Q 0 · · · 0
0 Q . . . 0
...

...
. . .

...

0 0 . . . Q

 (23)

and

R =


R 0 · · · 0
0 R . . . 0
...

...
. . .

...

0 0 . . . R

 (24)

This means that Q ∈ Rn·h
× Rn·h and R ∈ Rm·h

× Rm·h .
Let us define the first m rows of the matrix

(
GT QG + R

)−1

GT Q (Fr − F) ∈ Rm·h
× Rn as Kmpc. Now the feedback-

control law of the model-predictive control is given by

u B(k) = Kmpc · e(k) (25)

with Kmpc ∈ Rm
× Rn . The schematic of the control obtained

is explained in Fig. 4.

4.2. State-tracking controller

The proposed predictive controller is compared to a well-
known state-tracking controller whose design can be found
in [5,20,12]. Some basics steps of the design in a discrete
notation are given in what follows.

The linear state-tracking controller for the linearized error
dynamics (10) reads

u B(k) = Ks · e(k) (26)

where the gain matrix Ks ∈ Rm
× Rn is defined as follows:

Ks =

[
k1 0 0
0 sign(vr (k))k2 k3

]
(27)

An intuitive explanation of the gain matrix’s structure (27)
can also be obtained from observing Fig. 3. To reduce the
error in the driving direction e1 the tangential robot velocity
should be changed accordingly. Similarly, the orientation error
e3 can be efficiently manipulated by the robot’s angular speed.
Finally, the error orthogonal to the driving direction can be
reduced by changing the angular velocity. At the same time the
robot’s drive direction (forward or backward) should also be
considered.

The controller gains (k1, k2, k3) are determined by compar-
ing the actual and the desired characteristic polynomial equa-
tions. The desired characteristic polynomial takes the following
form:

(z + z1)(z + z2)(z + z3) (28)

where z1 = −e−2ζωn Ts , z2,3 = −e−ζωn Ts±iωn
√

1−ζ 2Ts , the
desired damping coefficient ζ ∈ (0, 1) and the characteristic
frequency ωn > 0, are selected.
The characteristic polynomial of a closed loop with the
controller (27) is

det(z I − A + BKs) = z3
+ (Tsk1 − 3 + Tsk3) z2

+

(
Ts

2vr k2 + Ts
2ωr

2
− 2 Tsk3 − 2 Tsk1 + Ts

2k1 k3 + 3
)

z

− Ts
2k1 k3 + Ts

3k1 vr k2 − 1 − Ts
2ωr

2
+ Ts

3ωr
2k3

+ Tsk3 − Ts
2vr k2 + Tsk1. (29)

Comparing coefficients at the same power of z in Eqs. (28) and
(29) results in

Tsk1 + Tsk3 − 3 = z1 + z2 + z3

T 2
s vr k2 + T 2

s ω2
r − 2Tsk3 − 2Tsk1 + T 2

s k1k3 + 3
= z1z2 + (z1 + z2)z3

−T 2
s k1k3 + T 3

s k1vr k2 − 1 − T 2
s ω2

r + T 3
s ω2

r k3

+ Tsk3 − T 2
s vr k2 + Tsk1 = z1z2z3.

(30)

Let us find the solution of Eq. (30) in the form k1 = k3:

k1 = k3 =
z123 + 3

2Ts
(31)

and k2 is then determined from the second row of (30) as

k2 =
−1/4 (z123 + 3)2

− Ts
2ωr

2
+ 2 z123 + 3 + z1 z2 + z3 z1 + z3 z2

Ts
2vr

(32)

or from the third row of (30) as

k′
2 =

1/4
(
z123 + 3

)2
− z123 − 2 + Ts 2ωr 2

− 1/2 Ts 2ωr 2 (z123 + 3
)
+ z1 z2 z3

1/2 Ts 2vr
(
z123 + 1

)
(33)

where z123 = z1 + z2 + z3.
For a short sampling time Ts (see Eq. (11)) the calculated

gains limit to final gains k∗

1 , k∗

2 and k∗

3 . Eq. (31) limits to k∗

1 and
k∗

3 , while both Eqs. (32) and (33) limit to the same expression
k∗

2 as follows:

k∗

1 = lim
Ts→0

k1 = 2ζωn

k∗

2 = lim
Ts→0

k2 = lim
Ts→0

k′

2 =
ω2

n − ωr (k)2

|vr (k)|

k∗

3 = lim
Ts→0

k3 = 2ζωn

(34)

where ωn should be larger than the maximum-allowed robot
angular velocity, ωn ≥ ωrMAX. When vr is close to zero, k2
goes to infinity and therefore a gain scheduling [10] should be
chosen for k∗

2 as k∗

2 = g · |vr (k)|. The system’s characteristic
frequency becomes

ωn(k) =

√
ω2

r (k) + gv2
r (k) (35)

and the final controller gains are

k∗

1 = k∗

3 = 2ζωn(k)

k∗

2 = g · |vr (k)| .
(36)
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Fig. 5. Trajectory tracking with the model-predictive controller: robot path
(—), reference path (–).

The tuning parameter g > 0 gives an additional freedom in
controller design. The control obtained has a similar structure
to that in [12,5,21]. The controller gains approach zero when
the trajectory stops, at which time the robot is not controllable.

Even if the controller gains from Eqs. (31) and (32) are
chosen to give stable and constant poles of the closed-loop
system, the controller is still nonlinear and time varying.
Therefore, the asymptotic stability is not guaranteed and should
be checked with a Lyapunov stability analysis, as shown in [5,
12].

5. Experimental results

The experimental results were obtained on the real mobile-
robot platform explained in Fig. 2. Two different design
procedures which result in similar controller structures, given
in Eqs. (25) and (26), are tested and compared. To ensure a
fair comparison, a similar dynamics, which gives comparable
actuator actions for the two controllers, was designed. The
first control law is obtained by the proposed model-predictive
control, and the second by the state-tracking controller,
common in the literature. In both experiments the maximum
control velocities and accelerations were limited, as explained
in Section 2. The maximum allowed tangential velocity and
angular velocity were vMAX = 0.5 m/s and ωMAX = 13 rad/s,
while the maximum allowed tangential wheel acceleration was
aMAX = 3 m/s2. Additionally, the system delay, D, mainly
originating from the vision system, was compensated. As
shown in Fig. 2 the state measurements are obtained from
a color camera and computer vision algorithm. The system
delay is therefore caused by picture grabbing hardware and
by the computationally demanding computer vision estimation
algorithm. Other sources of system delay are the computational
time for the control algorithms and the wireless connection.
From experiments the estimated common system delay is D =

2Ts . The undelayed system output q̄ can be estimated from the
delayed system output q and from the difference between the
undelayed and delayed model outputs using the same inputs as
Fig. 6. Trajectory tracking with the model-predictive controller: tangential
velocity v (- -) and angular velocity ω (—).

the system, i.e.,

q̄(k) = q(k) + qm(k) − qm(k − D)

where qm(k) is the output of the simulated system model
without delay and qm(k − D) is the output of the simulated
system model including the estimated system delay.

The reference trajectory for the experiments in Figs. 5 and 7
is defined by

xr (t) = 1.1 + 0.7 sin
(

2π t
30

)
,

yr (t) = 0.9 + 0.7 sin
(

4π t
30

)
where t ∈ [0, 30] s. In both experiments the robot starts with an
initial state error according to the reference trajectory (it does
not start with the correct orientation and position).

In the first experiment the mobile robot is controlled with
the proposed model-predictive controller (Figs. 5 and 6), where
the controller properties and dynamics are defined by the
parameters of the control. The reference model matrix is Ar =

I3×3 · 0.65, and the weighting matrices are

Q =

4 0 0
0 40 0
0 0 0.1

 , R = I2×2 × 10−3.

The ratio of the diagonal elements in Q determines the
sensitivity of the resulting controller to a certain error. A higher
value of the diagonal element increases the sensitivity (gain)
to the corresponding error. In the present case the control for
the error in the lateral direction of driving has the highest
weight, while the control for the orientation error has the
lowest sensitivity. Similarly, the diagonal elements in R define
the energy of the input-velocity signals; the lowest value of
the elements results in more energy-consuming control. The
coincidence horizon h influences the gain of the predictive
control. A smaller value of h results in faster control dynamics,
which consequently affects the noise propagation through the
loop. In the experiment, h is chosen to be h = 4.
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Fig. 7. Trajectory tracking with the state-tracking controller: robot path (—),
reference path (- -).

Fig. 8. Trajectory tracking with the state-tracking controller: tangential
velocity v (- -) and angular velocity ω (—).

The resulting mobile-robot trajectory tracking, obtained by
the proposed predictive controller, is shown in Fig. 5, while the
velocity inputs are given in Fig. 6. As shown in Figs. 5 and 6,
the model-predictive control exhibits good performance despite
the vision-system delay (approximately compensated) and the
noisy data, where the noise is mostly present in the orientation
data. Other sources of disturbances the system is subjected to
during experiments include sensor distortion such as wrong
pose estimation (outliers; 2% of all measurements) and camera
distortion corrections (perspective and radial distortion).
Mobile robot wheel slipping disturbance is prevented by
limiting allowable accelerations (see Section 2.2).

5.1. Comparison to the state-tracking controller

The proposed predictive controller is compared to the state-
tracking controller ( Figs. 7 and 8), with the gain matrix defined
in Eq. (36), where the tuning parameters are selected as ζ =

0.7 and g = 60. The performance of the obtained trajectory
tracking in Figs. 7 and 8 with the state-tracking controller is also
Fig. 9. Detailed view of the initial time response: model-predictive control
(—), state-tracking control (- -) and reference path (· · ·).

good. The quality of the state-tracking control is comparable to
that of the model-predictive control, although better results are
obtained with model-predictive control, especially during the
initial state-error response; the comparison is given in detail in
Fig. 9.

The mobile robot converges faster to the reference trajectory
in the case of model-predictive control. Better results are also
obtained when the robot is driving close to the reference;
tracking errors are lower during model-predictive control. The
sum-square error (SSE) for each component of the state error
(q − qr ) for model-predictive control is

SSEmpc =
(
0.08 1.71 11.34

)
and for the state-tracking controller it is

SSEs =
(
0.05 1.86 14.11

)
which, like for Fig. 9, favors model predictive control.

The model-predictive controller gives better control results,
which is to be expected because of the more complex control
structure, and taking into account future values of the reference,
not only the current value, as with the state-tracking controller.
As a consequence a more appropriate gain matrix (25),
especially during a variable (nonconstant) reference trajectory,
is obtained. Another property is the more flexible control
structure relating to the desired control properties.

The model-predictive controller seems to require more
tuning effort as it has more parameters than the state-tracking
controller, which has only two. The smaller number of
parameters appears more attractive. However, a reasonable
control performance of the MPC can easily be obtained by
changing the ratio of the weighting matrices Q and R. This also
gives the designer the possibility of obtaining more optimized
control, which is more difficult to obtain in the case of the state-
tracking controller.

Both the presented and compared controllers work well
when the mobile robot is close to the reference. For the
case when the robot is far from the reference trajectory the
controllers presented are not suitable because of large control
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actions resulting from large errors. A useful upgrade in such
a situation are the so-called landing curves, which allow the
controller to drive the robot efficiently to the reference.

Compared with other related predictive control systems
(discussed in Section 1) the main advantage of the approach
presented is the analytically derived control law which
significantly lowers the computational burden and enables its
usage also in fast real-time implementations. However similar
predictive control systems usually require some optimization
technique to obtain the control vector, which results in more
demanding computational algorithms less appropriate in fast
real-time implementations.

6. Conclusion

The model-predictive trajectory-tracking control of a mobile
robot is presented in this paper. The proposed control
law minimizes the quadratic cost function consisting of
tracking errors and control effort. The solution for the
control is analytically derived, which enables fast real-time
implementations. The proposed model-predictive control was
tested on real mobile robots and the experimental results
obtained were compared to a time-varying state-tracking
controller. Both controllers presented work well when the
mobile robot is close to the reference, although the model-
predictive controller gives better control results, which is to be
expected because of the more complex control structure taking
into account future values of the reference, not only the current
value, as with the state-tracking controller. Another property
is its flexible control structure relating to the desired control
properties.

The control system presented is applicable also to a large
scale mobile robot for tracking planned trajectories in complex
environments with obstacles. Our future plans include the usage
of the controller obtained on a Pioneer 3-AT platform. Future
improvements will focus on an increased robustness of the
algorithm presented to larger tracking errors, mainly resulting
from the wrong initial robot posture. The concept of landing
curves, which guaranties an exponential convergence to the
reference trajectory, will be included. Even better control would
come from obtaining a more accurate model for tracking the
error dynamics, which will be obtained by using a velocity
linearization technique.
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G. Klančar, I. Škrjanc / Robotics and Autonomous Systems 55 (2007) 460–469 469
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